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GT Input CloSe-Net

Figure 1. Left: We present CloSe-D, a large-scale dataset of people in clothing with fine-grained segmentation labels. We use
this dataset to train our clothing segmentation model, CloSe-Net, tailored to segment clothing from 3D scans. Right: We show
results of CloSe-Net on the diverse set of scans, where each instance represents GT, Input, and Prediction.

Abstract

3D Clothing modeling and datasets play crucial role in
the entertainment, animation, and digital fashion industries.
Existing work often lacks detailed semantic understanding
or uses synthetic datasets, lacking realism and personaliza-
tion. To address this, we first introduce CloSe-D: a novel
large-scale dataset containing 3D clothing segmentation of
3167 scans, covering a range of 18 distinct clothing classes.
Additionally, we propose CloSe-Net, the first learning-based
3D clothing segmentation model for fine-grained segmenta-
tion from colored point clouds. CloSe-Net uses local point
features, body-clothing correlation, and a garment-class
and point features-based attention module, improving per-
formance over baselines and prior work. The proposed
attention module enables our model to learn appearance
and geometry-dependent clothing prior from data. We fur-
ther validate the efficacy of our approach by successfully
segmenting publicly available datasets of people in clothing.
We also introduce CloSe-T, a 3D interactive tool for refining

segmentation labels. Combining the tool with CloSe-Net in
a continual learning setup demonstrates improved general-
ization on real-world data. Dataset, model, and tool can be
found at https://virtualhumans.mpi-inf.mpg.de/close3dv24/ .

1. Introduction
Clothing plays a vital role in shaping our identity. Our
dressing choices contribute to our representation, convey-
ing cultural traits, religious beliefs, geographical origin, or
mood. In light of the recent attention on the expressiveness
of avatarization processes, Computer Vision scholars dedi-
cate tremendous efforts in acquiring, modeling, and compre-
hending digital clothing, enabling uncountable applications:
from digital fashion to AR/VR; from home entertainment to
industrial-scale content creation.

Semantic understanding of humans in clothing from 2D
images has seen significant progress [16, 17, 40, 57], but the
lack of geometrical information is an obstacle for AR/VR
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applications, where actions occur in a 3D world. Despite
the development of 3D data capture techniques [1, 3, 7] and
the consequent abundant geometrical data of 3D people in
clothing [12, 20, 29, 59], garment analysis and its semantic
understanding remains an open problem.

The primary challenge lies in representing 3D digital
garments and their semantics. Certain existing approaches
rely on synthetic clothing meticulously designed by ex-
perts [9, 35] or involve expensive acquisitions [23, 66],
where accurate information comes at the expense of scala-
bility. Some recent methods address human and clothing
models within a unified representation [14, 42, 48] but lack
a semantic understanding of the distinct parts. We posit
that the absence of large-scale and high-quality segmented
datasets serves as a fundamental barrier.

Consequently, the development of robust methods for
understanding the 3D cloth semantics has been hampered.
Prior work like MGN-Seg [10] requires expensive pipelines
involving rendering, SMPL+D registration [24], 2D seg-
mentation [16], and hand-crafted clothing priors, making it
time-consuming (15-20 minutes per scan) and prohibitive
for complex clothing items. In contrast, GIM3D [36] uses
a SotA part segmentation method trained on synthetic data,
accounting only for geometric information, namely location
and normals. Both are limited by 3-class prediction: upper
and lower garments and the human body, which trivialize the
problem. Considering the clothes variations in style and tex-
tures, getting semantic information from 3D scans requires
fast, accurate, generalizable, and scalable method.

This work aims to fill this gap with a three-fold contri-
bution. First, we introduce CloSe-D, a large-scale dataset
of people in clothing with fine-grained segmentation labels,
for a total of 3167 scans and 18 garments categories. To
our knowledge, this is the first real-world dataset with such
fine-grained segmentation labels. Secondly, we use CloSe-D
to train CloSe-Net, a 3D clothing segmentation model to pre-
dict 18 distinct types of clothing. Our model is based on two
key intuitions: we correlate body parts with clothing classes,
leveraging the SMPL [28] body model(Sec. 4.1.2); and we
address the relationship between local geometric-appearance
cues and clothing class in segmentation using an attention
module (Sec. 4.1.3), learning associations between point
features and clothing classes. We demonstrate a significant
improvement over baselines and prior works (Sec. 5.2 and
Sec. 5.2.1). Finally, to achieve the most comprehensive gen-
eralization possible, we develop CloSe-T, an interactive 3D
tool to provide quick human feedback/annotation. This tool
allows users to refine segmentation predictions and rectify
segmentation labels. Our tool can also be integrated with
CloSe-Net, where the feedback is backpropagated, and the
network is fine-tuned in a continual learning setup( Sec. 5.3).
We leverage this tool to prepare high-quality segmentation
training data CloSe-D. We also use the tool in conjunction

with CloSe-Net to prepare high-quality segmentation labels
on public datasets, which we release as CloSe-D++.

In summary, our contributions are:
• CloSe-D: A high-quality fine-grained clothing segmenta-

tion dataset containing segmentation labels for 3167 scans,
covering 18 clothing classes.

• CloSe-Net: A human prior and clothing classes attention-
based 3D clothing segmentation method that outperforms
baselines and prior work.

• CloSe-T: A 3D interactive tool to refine the model in a
continual learning framework, improving generalization
to new datasets.

• CloSe-D++: Fine-grained semantic segmentation for a
subset of publicly available real-world datasets.
We release our data, model, and tool for further research.

2. Related Work

Our work includes a new 3D clothing dataset, a 3D segmen-
tation model, and an interactive refinement method, thus the
related work covers these three areas.

2.1. 3D Clothing Datasets

The rise of learning-based digital fashion and virtual try-on
led to the creation of image-based clothing datasets with
semantic labels [17, 27]. However, these datasets lack pose
variation, are 2D and mostly frontal, and are unsuitable for
learning overall human/clothing shape, deformations, and
3D/4D models.

3D/4D Clothing datasets can be grouped into two cate-
gories: Synthetic and Captured ones. Synthetic datasets [9,
30, 35, 51] are obtained using physics-based simulation soft-
ware [4], their generation requires expert intervention and
mostly contain geometric information without texture. More-
over, this may not scale for complex clothing and multiple
layers, often resulting in non-realistic deformations.

On the other hand, the accessibility of capturing datasets
has increased recently, courtesy of advancements in 3D/4D
capture systems [1, 7]. THuman1-4 [43, 45, 59, 64] propose
medium to high-quality static scans of individuals in lim-
ited clothing styles/variations with limited pose variations.
BUFF/CAPE [29, 37, 60], and HuMMan [12] provide dy-
namic scans of subjects in different clothing items. These
datasets contain point clouds, occasionally texture, and
SMPL parameters, but lack clothing semantic segmentation.
Prior work such as MGN [10], SIZER [47], GIM3D [36] pro-
vide coarse 3D clothing segmentation labels, containing only
three categories, namely upper garment, lower garment, and
body. Deepfashion3D [66] is a dataset of high-quality and di-
verse 3D Clothing items, scanned on mannequins consisting
of 10 clothing classes with keyline annotations and SMPL
pose parameters. However, the clothing items are scanned
separately and cannot be used to create a fully clothed per-



Dataset # scans Segmentation Garment Class Texture

MGN [10] ∼300 3
SIZER [47] ∼2000 3
DeepFashion3D [66] 2078(563) 10
THuman [45, 59, 63] ∼1000 -
CloSe-D ∼3000 18
CloSe-D++ ∼( +1000 ) 18

Table 1. Compared to current 3D clothing(real and static) datasets,
CloSe-D is the first extensive dataset featuring fine-grained clothing
segmentation labels and a variety of clothing items.

son. In contrast, our dataset is more realistic, featuring a
broader range of clothing classes.

None of the existing real-world clothing datasets contains
fine-grained clothing segmentation labels of clothed humans.
In CloSe-D, we provide clean and fine-grained clothing seg-
mentation labels of scans along with colored point clouds,
and SMPL [28] parameters. We compare CloSe-D with
existing real-world datasets in Table 1.

2.2. 3D Clothing Segmentation

2D clothing segmentation and human parsing have been
extensively studied. Several prior works [16, 25, 55, 56, 62]
propose learning-based human parsing in images, trained
using 2D clothing datasets such as [15, 17]. These methods
exploit human body parts and pose information to improve
accuracy and generalization. However, they cannot be used
for 3D segmentation, as they are not trained to produce
multi-view consistent results, and lifting labels from 2D to
3D requires a slow optimization process.

MGN-Seg [10] is an optimization-based 3D clothing
segmentation method that involves registering scans to
SMPL+D [10, 11], applying PGN [16] for 2D segmentation
of multi-view renderings of a mesh. These 2D segmentation
images are then lifted back to 3D by solving GrabCut [41]
in SMPL-UV space with a handcrafted clothing class based
prior. This takes roughly 20 minutes per scan, is limited to
3 clothing classes, and requires expensive SMPL+D regis-
tration and hand-crafted clothing prior. On the other hand,
CloSe-Net only needs colored point cloud, SMPL(θ,β) pa-
rameters, and clothing classes present in the scan and learns
clothing prior from data.

3D clothing segmentation from a point cloud resembles a
part segmentation setup. There are various existing works
in learning-based 3D part segmentation, such as the semi-
nal PointNets [13, 38] and self-attention-based PointTrans-
former [61]. More recent methods like KPConv [46] use ker-
nel points defined in Euclidean space to apply convolution.
SGPN [52] uses a single network to predict point group-
ing proposals and a corresponding semantic class for each
proposal. Recent SotA methods [18] like DGCNN [53] intro-
duces EdgeConv, a differentiable layer representing data on
graphs dynamically computed in each network layer. Delta-

Conv [54] uses anisotropic convolution layers and introduces
a convolution layer that combines geometric operators from
vector calculus to construct anisotropic filters on point clouds.
Existing works lack evaluations on clothing segmentation
and do not integrate human-clothing-specific knowledge. In
contrast, CloSe-Net employs a DGCNN-based point-feature
module, leveraging human body and clothing priors for im-
proved performance in clothing segmentation. We also show
in our experiments that SotA DGCNN and DeltaConv, have
limitations when applied to this task.

Most relevant to our work is GIM3D [36], which uses
SotA part segmentation methods to segment directly from
a point cloud, but similar to [10, 47] it is limited to three
classes. To our knowledge, no existing method directly
operates on a colored 3D point cloud/mesh to generate fine-
grained 3D clothing segmentation. GIM3D+ [33] extends
GIM3D, by including more diverse fabrics, sizes, and poses
in the dataset, but is still limited to three classes and doesn’t
consider texture information.

2.3. 3D Interactive Segmentation and Refinement

Tools for interactive segmentation refinement are crucial for
developing large-scale datasets and incorporating human
feedback for improving segmentation. In 2D, classical meth-
ods like GrabCut [41] and a more recent interactive segmen-
tation refinement [44] use human feedback input to improve
segmentation. In 3D, 3D-GrabCut [31] and mesh cutting
tools [19] are used for foreground/background segmentation.
However, these methods do not leverage learned neural fea-
tures and initial predictions. Recent works like [22, 39] are
related to 3D interactive part segmentation annotation tools.
iSeg3D [39] utilizes primitive-aware embedding and doesn’t
consider color information of data. InterObject3D [22] pro-
poses a generalizable pipeline for interactive 3D segmen-
tation, where the network is refined based on user clicks
for a given target domain. Yet, none of these methods is
designed for clothing segmentation and doesn’t consider
catastrophic forgetting. We introduce CloSe-T, a novel, fast,
and easy-to-use interactive tool, tailored for the clothing
domain. We propose the network refinement in a continual
learning setup [50], such that the network not only performs
well on the target domain but also learns from it, improving
generalization. Prior works like [21, 26] introduce weighted
loss term and EWC(elastic weight consolidation) to avoid
catastrophic forgetting. We use [26] based weighted loss in
our setup.

3. CloSe-D: 3D Clothing Segmentation Dataset
We introduce CloSe-D, a large-scale 3D clothing segmen-
tation dataset that contains labels for 3167 scans compris-
ing of 18 garment classes. CloSe-D consists of scans from
two kinds of sources: 1) CloSe-Di: Scans captured us-
ing Treddy [7] scanner, and 2) CloSe-Dc: Scans from the



Data
Class T-shirt Shirt Vest Coat Jacket Hoodies Short-Pants Pants Skirts

CloSe-Di 415 556 85 191 - 209 500 897 59
CloSe-Dc 775 739 107 306 42 42 252 1404 34

Data
Class Dress JumpS. SwimS. UnderG. Scarf Hat Shoes Body Hair

CloSe-Di - - - - - 114 1437 1455 1382
CloSe-Dc 50 6 23 10 25 64 1686 1732 1717

Table 2. Number of scans per clothing class in CloSe-D (i.e., the
union of CloSe-Di and CloSe-Dc).

commercial datasets, such as twindom, renderpeople [2, 6–
8]. For CloSe-Di we will release scans, SMPL parameters,
and segmentation labels, while for CloSe-Dc we will pro-
vide SMPL parameters and segmentation labels only, due
to license concerns. We show examples from our dataset
in Fig. 1(left), and the details in Table 2.
Ground Truth Segmentation Labels. To obtain the ground
truth segmentation labels, we adopt the pipeline utilized
in [10, 47], as mentioned in Sec. 2.2. However, unlike MGN-
Seg [10], our pipeline does not require SMPL+D registration,
as we directly apply all the steps on scan and use [5] for lift-
ing labels to 3D. Due to inconsistent predictions across views
and limited generalization of 2D segmentation methods, the
3D segmentation labels may contain noise. To address this,
we manually refine the segmentation using CloSe-T, which
is explained in Sec. 4.2.

4. Method

In this section, we introduce CloSe-Net (Sec. 4.1), a 3D cloth-
ing segmentation model that predicts fine-grained clothing
labels from a colored point cloud. Additionally, we present
CloSe-T (Sec. 4.2), a 3D interactive tool used for creating
high-quality segmentation labels of CloSe-D. We demon-
strate the utility of CloSe-T in enhancing the generalization
of our model on real-world datasets.

4.1. CloSe-Net: 3D Clothing Segmentation Network

Overview. CloSe-Net predicts fine-grained clothing seg-
mentation labels directly from colored point clouds, given
SMPL parameters and clothing classes as input. As shown
in Fig. 2, CloSe-Net consists of four modules: Point En-
coder, Body Encoder, Clothing Encoder, and Segmentation
Decoder. Previous methods (e.g., MGN-Seg [10]) manually
define clothing priors, leading to poor generalization across
garment styles. In contrast, our model learns clothing priors
by establishing the correlation between body parts and local
clothing, utilizing the Body Encoder, and understanding the
connection between point features and clothing class through
the Clothing Encoder. As a result, our approach learns a
prior that incorporates the garment’s style, body information,
and the combined local geometric and appearance features.
Input/Output. CloSe-Net takes a point cloud P ∈ Rn×9 as
input, consisting of n points, denoted as pi = {xi|ci|ni},
where xi ∈ R3 represent Euclidean coordinates, ci ∈ R3

represent per-point colors and ni ∈ R3 represent nor-
mals. CloSe-Net predicts per-point segmentation labels,
yi ∈ {1 . . .K}, where K is the number of classes.

As CloSe-Net incorporates human body prior and cloth-
ing class-based attention module, our method also needs
SMPL (θ,β) parameters and clothing classes (g) of the scan.
We use SMPL registration library [11, 24] to obtain SMPL
parameters. For clothing class labels, we render a single
viewpoint of the scan and infer the clothing classes using a
SotA human parsing network [40].

4.1.1 Point Encoder

Semantic/part segmentation of a point cloud needs meaning-
ful local and global geometric features [18]. Following this,
we implement our Point Encoder, fpoint using SotA Edge-
Conv based architecture, called DGCNN [53]. DGCNN
operates on a point cloud by constructing a directed graph
G = (V, E), where V ∈ {1, . . . n} and E ⊆ V × V . The
edges E are obtained using k-nearest neighbors of pi ∈ RF ,
where F = 9 for first layer, and 64 for subsequent layers.
We then calculate per-point features using Edge Convolution
given in Eq. (1), where hθ is the learnable edge feature layer.

p′
i = max

j:(i,j)∈E
hθ(pi,pj) (1)

Similar to [53], we use 3 EdgeConv layers followed by
an MLP (fMLP) to learn a global encoding. This results
in multi-scale per-point features given by F p

i = {p′s
i |p′

g},
where s = {0, 1, 2}, p′s

i ∈ Rl is per-point feature learned
by sth EdgeConv layer and p′

g ∈ R1024 is a global
encoding of the point cloud. p′

g is obtained using an
MLP, p′

g = fMLP(P
′), where P′ = (p′

0, . . . ,p
′
n) ∈

Rn×(l+l+l),p′
i = {p′0

i |p′1
i |p′2

i } is the concatenation of
intermediate per-point features.

4.1.2 Body Encoder

We incorporate the correlation between body parts and cloth-
ing class using SMPL mesh, given by M(β,θ) and SMPL
template mesh T. In particular, for every point xi in the
input point cloud, we find the index (j) of the nearest vertex
on SMPL mesh, given by Mj(β,θ). We then find the corre-
sponding vertex location in SMPL template T. In this way,
we associate each point in the point cloud with fine-grained
semantic information about the human body. This module is
not learnable and only requires a nearest-neighbor search in
Rn×3. We represent the encoded body feature as F b

i = Tj

and call this a Canonical Body Encoder.

4.1.3 Clothing Encoding and Class-based Attention

Clothing classification is ambiguous due to its subjective
nature (e.g., think about the difference between jackets
and coats). To address this, we use a learnable codebook
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Figure 2. CloSe-Net: Given a colored point cloud P = {pi . . .pn} with SMPL parameters (θ,β), and clothing classes (g) detected in the
scan, where pi = {xi|ci|ni} represent point location, color and normal of a point, CloSe-Net predicts fine-grained per-point segmentation
labels. (a) Point Encoder(Sec. 4.1.1) takes P, as input and predicts per-point features F p. (b) Clothing Encoder(Sec. 4.1.3) consists of a
learnable codebook G and an attention module, which predicts F c, based on per-point feature p′2

i and G. This p′2
i is intermediate feature

of Point Encoder. (c) Body Encoder(Sec. 4.1.2), finds per-point canonical vertex in SMPL template, given SMPL θ, β parameters. (d)
Finally, the Segmentation Decoder(Sec. 4.1.4) takes F p, F c, F b and predicts segmentation labels, yi for ith point. Solid boxes in model
are learnable, while others are fixed.

G ∈ R18×l. Our model learns distinct latent vectors [49]
for each clothing class in an auto-decoding manner [34].
This enables the model to acquire per-clothing attributes and
relevant characteristics for segmentation. The learned code-
book is fixed during inference. Compared to a non-learnable
binary/one-hot encoding-based representation, the learnable
codebook yields better performance in challenging regions,
like clothing boundaries and uncommon clothing items like
jumpsuits(see Sec. 5.2.3). The key idea of our model is
learning an explicit association between per-point features
and clothing class. We implement this using an attention
module, where we compute how much each point feature
attends to a clothing feature. The attention between a point
feature and a specific clothing latent code increases when
that particular clothing is present at the query point.
We define query vector using per-point EdgeConv features
p′s

i , s = 2, and key-value pair using the learnable codebook
G and define the attention mechanism in Eq. (2), where ◦ is
masking operator. Simply using p′s

i ×G, would also yield
features for clothing items not present in the scan. This might
result in learning spurious correlations between features and
labels. To avoid this, we mask the key matrix G, using a
binary encoding g of length K = 18, where gj = 1, if jth

class is present in the scan, and gj = 0 otherwise. Our model
is steered towards learning the clothing-specific prior, lever-
aging fine-grained local point features and clothing latent
codes.

F c
i = softmax(p′s

i × (g ◦G)T )G. (2)

4.1.4 Segmentation Decoder

Finally, we concatenate all the features F all
i = {F p

i |F b
i |F c

i },
and pass it through a segmentation decoder fdec, which
predicts per-point segmentation labels. The network fdec is

implemented as an MLP.
Loss. We train CloSe-Net with the cross-entropy loss in
Eq. (3), where ŷki is the true label, yki is the predicted proba-
bility of the kth class, and K is the number of classes.

LCE = −
K∑

k=1

ŷki log(y
k
i ) (3)

4.2. CloSe-T

In the previous section, we presented our method which
learns clothing prior from data for improved generalization
over garment styles, appearance and categories. However,
we foresee that a variety of clothes often shows unique char-
acteristics that are difficult to catch statistically, especially
with the datasets available at the present date. For this reason,
we introduce CloSe-T, a fast-interactive tool to streamline
the label refinement process. It provides a graphical inter-
face built explicitly for clothing segmentation and relies on
Open3D library [65], offering a broad set of functionali-
ties (e.g., points selection, labels updating, segmentation
prediction, model refinement). We use CloSe-T to refine
the training dataset, and to improve our network generaliza-
tion on publicly available dataset by backpropagating user
feedback in a continual learning setup [50].
Continual Learning CloSe-Net Refinement. Let yki be the
predicted probability of the kth class label of ith point in
given pointcloud, and ŷki be the correct segmentation label
provided by user using CloSe-T. We define the loss as:

Lrefine = λcLCE
i∈C

(yki , ŷ
k
i )+λfLCE

i∈F
(yki , ŷ

k
i )+λwLW(θ, θ′),

(4)
where C is the set of indices of point cloud corrected by the
user and F is the set of remaining points. LCE is cross-
entropy loss defined in Eq. (3), LW is weight regularization,



penalizing weights difference between refined model (θ′) and
original pre-trained model (θ). λc, λf , λw are the weights
associated with each loss term. We only fine-tune the last
layer of the segmentation decoder and MLP of the Point
Encoder. Following [26], we use λc ≪ λf , in order to avoid
catastrophic forgetting.

5. Experiments and Results

We describe the experiment setup in Sec. 5.1, evaluate our
proposed CloSe-Net and compare it with SotA part segmen-
tation in Sec. 5.2, and with prior methods in Sec. 5.2.1. We
analyze each module of CloSe-Net in Sec. 5.2.3 and discuss
the attention-based clothing prior in Sec. 5.2.2. Additionally,
we present results on publicly available clothing datasets
in Sec. 5.3 and showcase improvements in generalization
through CloSe-T-based refinement.

5.1. Experimental Setup

Implementation Details: We use the official DGCNN
implementation [53] with 3 EdgeConv layers (feature-
length l = 64 and |p′

global| = 1024). For the clothing
codebook(G), we use l = 64. The clothing-class-based
attention module is based on multi-head attention. The train-
val-test splits of CloSe-D are 2652/265/270.
Error Metric. Intersection over Union (IoU) is a popular
metric for segmentation, quantifying the overlap between
predicted and ground truth labels. We consider both per-class
IoU and mean IoU (IoUmean) over all classes.

5.2. 3D Clothing Segmentation

We evaluate CloSe-Net on test split of CloSe-D, both qual-
itatively (Fig. 14) and quantitatively (Table 3). Given the
similarity between clothing segmentation and part segmen-
tation tasks [36], we compare our method with SotA 3D
part segmentation models trained on CloSe-D. For this, we
employ methods [18] like DGCNN [53] and DeltaConv [54].
As observed in Fig. 14-middle, DGCNN and DeltaConv
struggle with multi-layer clothing. This arises from the ab-
sence of clothing-related information in the model and its
inclination to overfit to single-layer scans, which constitute
the majority of the dataset. On the other hand, our model
incorporates clothing information via the learned distinct
codebook and hence predicts correct labels with crisp bound-
aries. Moreover, as seen in Fig. 14-top both baseline methods
inadequately segment less common classes, such as hats. We
also observe texture bias in both baseline methods (Fig. 14-
bottom); both networks fail to predict the same class for
nearby points with different texture colors. We attribute this
to the codebook and masked attention module in our model,
which enables the network to learn distinct features for each
clothing and avoid learning spurious correlations between
point features and absent classes.

Input DGCNN [53] DeltaConv [54] Ours GT

Figure 3. Comparison with SotA part segmentaiton models:
DGCNN [53] and DeltaConv [54]. Our model predicts accurate
clothing classes and finer boundaries in complex scans. This can
be attributed to our model’s utilization of local point features, body
priors, and clothing class-based attention features.

5.2.1 Comparison with Prior Work

We compare CloSe-Net with prior 3D clothing segmentation
methods like MGN-Seg [10] and GIM3D [36]. Since both
GIM3D and MGN-Seg [10] predict 3 classes, we merge the
predictions of our model into the respective classes. For
GIM3D, we only compare with PointNet++ [38], as it is the
only one authors provided to us. We observe from Table 4
that CloSe-Net largely improves over prior work.
Moreover, CloSe-Net takes approximately 5− 6 seconds to
infer the segmentation labels for the whole scan(270k ver-
tices) on 12 GiB GPU (3080Ti). Whereas for MGN-Seg [10]
it takes roughly ∼ 20 minutes to get the segmentation labels
for SMPL+D mesh (27k vertices).

We further provide qualitative results in Fig. 4. We ob-
serve that MGN-Seg [10] is not able to generate precise
labels at boundaries, e.g. at the leg. This is because the prior
designed for lower garments comes from a fixed template
of “long pants”, whereas the pant in this scan is smaller than
the pre-defined template. We also observe that sometimes
the handcrafted features are not able to correct segmenta-
tion errors due to texture bias and inconsistent multiview
prediction of 2D human parsing [16, 40]. This is visible
in the right hand of the scan. We notice that GIM3D fails
near boundaries. This stems from the fact that normal in-
formation is not sufficient to distinguish between different
clothing, especially in the case of real-world scans, where
normals can be noisy. On the other hand, our model results
in accurate boundaries as it takes texture information into



Method Mean T-shirt Shirt Vest Coat Jacket Hoodies Short-Pants Pants Skirts Dress JumpS. SwimS. UnderG. Scarf Hat Shoes Body Hair

DGCNN [53] 87.11 87.88 81.02 90.58 81.60 96.16 97.46 94.60 82.50 96.44 73.61 76.67 98.89 99.26 73.33 95.19 79.47 80.45 82.83
DeltaConv [54] 84.78 87.22 73.56 84.68 80.06 98.52 96.99 89.58 78.37 94.11 67.08 77.04 99.26 99.26 73.33 95.19 72.98 76.69 82.13
Ours 91.23 95.47 92.94 98.86 90.12 99.23 99.43 98.32 85.96 98.12 79.11 77.73 99.78 99.96 73.23 97.72 82.96 85.76 87.49

Table 3. We quantitatively compare the results of our method SotA part segmentation methods, DGCNN [53] and DeltaConv [54]. We
report IoU for every class and mean over all the classes(IoUmean).

Input MGN-Seg [10] GIM3D [36] Ours GT

Figure 4. Comparison with MGN-Seg [10] and GIM3D [36].

Dataset MGN [10] GIM3D [36] Ours

CloSe-D-Test 88.88 72.04 92.47

Table 4. Comparison with MGN [10] and GIM3D [36] on three
class(upper, lower and body) segmentation.

account as well and doesn’t rely on any pre-defined prior.

5.2.2 Learned Clothing Prior

A good clothing prior is crucial for segmentation. In MGN-
Seg [10], a geodesic distance-based prior was manually
crafted. This approach lacks scalability for new clothing and
struggles with varying shapes within the same class (e.g., dif-
ferent jacket lengths or shirt sleeve styles etc.). Interestingly,
our model’s attention-based clothing encoder learns clothing
prior from point features (F p) and a garment codebook (F c).
This is visualized in Fig. 5, where attention for the jth gar-
ment class at point i is calculated as p′k

i ×Gj . As compared
to MGN-Seg [10] prior, this is not manually defined and also
incorporates the local properties of the clothing.

5.2.3 Ablation

We experimentally validate and discuss the design choices
of each module of CloSe-Net in Table 5 and Fig. 6.
Point Encoder. We experiment with two part segmentation
models: DGCNN [53] and DeltaConv [54] as Point Encoder.
Table 5 shows the DGCNN-based model significantly outper-
forms the DeltaConv-based one. This behavior is similar to
the standalone DGCNN and DeltaConv, as shown in Table 3.
DGCNN surpasses DeltaConv by learning feature spaces
where semantically similar features are closely clustered.
Hence, we use DGCNN as Point Encoder in our model.
Body Encoder. We explore different body encodings:
Canonical Body Encoder, F b (Sec. 4.1.2), and a fusion
of F b with a coarse feature encoder based on COAP [32],
resulting in the Hybrid Body Encoder. The lack of Body En-
coder in the model leads to mislabeled regions in improbable

Coat Pants Shirt Hoodies

Hat TShirt Short Pants Hoodies

0

1

Figure 5. Clothing prior learned using attention module: At-
tention module in Clothing Encoder, learns a robust clothing prior
based on point features. Here we visualise the attention of point
feature on different clothing class.

locations, such as a t-shirt label appearing in the skirt region.
These mislabels are evident as patches in Fig. 6-top. The Hy-
brid Body Encoder learns vertex and body part associations
with the clothing, but results in smudged boundaries(see
skirt and legs in Fig. 6-top ). This is because the hybrid
model contains body-part features, so it tends to associate
the same labels to all the points in a body part if there is
no significant difference in geometry or appearance. Our
proposed Body Encoder uses fine-grained correspondence
and establishes accurate correlations between clothing labels
and body locations.
Clothing Encoder. We compare our attention-based cloth-
ing encoder, with a binary encoding-based one. In binary
encoding, we use g, instead of F c. The attention-based
model boosts performance and also learns garments prior
from data. Binary encoding is not consistently effective
in predicting the correct garment, particularly when con-
fronted with uncommon clothing styles, as exemplified by
the jumpsuit case in Fig. 6-bottom, similar to models without
Clothing Encoder. Moreover, without any Clothing Encoder,
models exhibit texture bias. Leveraging the learned clothing
prior(Sec. 5.2.2) significantly improves performance, and
alleviates the mentioned problems.

5.3. CloSe-D++

Our model generalizes well on real-world public datasets,
showing good results in Fig. 7. However, it exhibits blurry
boundaries and texture bias for some scans, as seen in Fig. 8



Points
Encoder Body Encoder

Clothing
Encoder

IoUmean ↑

DGCNN

Canonical Attention 91.23
Canonical Binary 90.41

Hybrid Attention 89.70
Hybrid Binary 89.68

× Attention 89.90
Canonical × 87.18

× × 87.10

DeltaConv Canonical Attention 86.84

Table 5. Quantitative evaluation of the ablation study on different
modules of the proposed CloSe-Net model. The table shows the
performance of the model with different combinations of the Point
Encoder, Body Encoder, and Clothing Encoder.

Input × + Hybrid + Canonical GT

Input × + Binary + Attention GT

Figure 6. Body Encoder(Top): As opposed to others, the pro-
posed Body Encoder(Canonical) is simple, generalizes to difficult
poses, and produces fine boundaries. Clothing Encoder(Bottom):
Attention-based encoder and codebook learn distinct garment fea-
tures and prior, achieving accurate segmentation prediction.

3DHumans-IIITH [20] THuman2.0 [59]

Figure 7. Results of CloSe-Net on publicly available datasets [20,
59], showing generalization capability of the model.

(middle). Generalizing to out-of-distribution real-world
datasets is challenging due to the vast variability of clothing
styles and few differences between classes.

To address this, we use the proposed CloSe-T in a con-
tinual learning approach(Sec. 4.2). The goal is to improve
performance over new datasets, without catastrophic forget-
ting. We show the results of the original model and fine-
tuned model on a scan from THuman2 [59] in Fig. 8. After
fine-tuning, results on CloSe-D-test is a mean IoU of 90.35,
which is a small decrease from the original model(91.23)
and still better than prior work and baselines. We will pro-
vide the labels of publicly available datasets such as THu-

Input Original Network Refined Network

Figure 8. Improving CloSe-Net performance on THuman2.0 [59]
by fine-tuning the model on few samples from THuman2.0 using
CloSe-T.

man2,3 [45, 59], CAPE [29](textured-scans), 3DHumans-
IIITH [20], a subset of HuMMan [12] and we call this dataset
CloSe-D++.

6. Conclusions
We present a novel fine-grained 3D clothing segmentation
model that works directly on point clouds, and to train it we
introduce a large-scale dataset of people in diverse clothing
items, poses, and with high-quality segmentation labels. We
incorporate human body information to improve the pose-
generalization of our model and introduce a novel garment
class attention module, which learns clothing prior from
data, as opposed to hand-crafted priors [10]. Our model
outperforms prior work and baselines and generalizes to
public out-of-distribution datasets. We further introduce a
continual learning-based refinement strategy to improve the
generalization of the model, without catastrophic forgetting.
Limitations and Future Work To the best of our knowl-
edge, this is the first dataset and model for 3D clothing
segmentation from colored point clouds, which contains di-
verse and fine-grained segmentation labels. Future work may
broaden our work by adding more clothing items through
CloSe-T, e.g., to include a variety of cultural styles. Our
approach necessitates the garment class worn by the subject
as network input, requiring a preprocessing step. Potentially,
this can be obviated by incorporating clothing prediction
directly within the network. Lastly, to enhance network gen-
eralization, we have integrated the continual learning [26]
framework, paving the way for future exploration of recent
strategies such as EWC [21].
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SUPPLEMENTARY MATERIALS
CloSe: A 3D Clothing Segmentation Dataset and Model

Figure 9. Top: Multiview rendered images of a scan.Bottom: Cloth-
ing segmentation obtained using 2D Parsing method [16]. 2D
Parsing method generates inconsistent labels across views. Conse-
quently, when these labels are elevated from 2D to 3D using the
2D-to-3D lifting technique, the resulting segmentation is noisy.

7. Dataset

Our dataset CloSe-D comes from two sources, 1) CloSe-Di,
which is dataset captured in our lab and 2) CloSe-Dc, dataset
from commercial data sources. We explain the dataset captur-
ing details in the following section, followed by the process
for obtaining segmentation labels.

CloSe-Dc Data. We collect scans from different commer-
cial dataset such as AXYZ [2], Twindom [8], Treedy [7],
Renderpeople [6]. Due to licensing issues, we will not pro-
vide the scans from these datasets, but we will release the
segmentation labels and detailed instructions to purchase
these datasets from respective sources.

CloSe-Di Data Capture. Following data capture setup
in [47, 58], we create a dataset of approximately 100 sub-
jects in 7 diverse poses, wearing 12 garment classes. We
use Treedy’s scanner [7], which consists of ∼ 130 high-
resolution camera at a fixed position. We use Metashape [5]
for 3D reconstruction, which is photogrammetry-based re-
construction. Reconstructed scans are highly detailed and
have high-resolution texture maps associated with them. We
also register SMPL [28] to each scan, with the registration
method used in [10, 24, 47].

Ground Truth Segmentation Labels of CloSe-Dc Scans.
We follow the pipeline similar to the one in MGN-Seg [10].
We first register the scans to SMPL and SMPL+D [10]. We
then render the registered meshes from 72 different views
and apply SotA 2D Human Parsing method, PGN [16]. One
of the major limitations of such a pipeline is inconsistent
multiview prediction of the 2D Human Parsing method, as
shown in Fig. 9. This is expected behavior from such meth-
ods as 1) they are not trained with any explicit loss to produce
multi-view consistent results, and 2) they are not trained on
multi-view images of the same scene. As a result, we ob-
serve many patches of undesired clothing classes in the 2D
segmentation and hence in the lifted 3D segmentation as
well. MGN-Seg [10] tried to solve this problem by using a
pre-defined prior, but these priors are limited to 3 classes. We
propose to clean such inconsistency using our hand-crafted
heuristics and CloSe-T(see Fig. 13(left)). Moreover, PGN la-
bels are inconsistent with our CloSe-Net labels, so we apply
some merging and splitting in labels. We first explain heuris-
tics for merging and segregation of labels in the following
points:

• Merging body parts: In PGN there are separate labels for
left-leg, right-leg, left-arm and right-arm. We instead use
a single label for all these parts, so we merge them into a
single category.

• Separate labels for Upper and Lower Garments : PGN
generates only two kinds of upper garment labels, namely
‘Shirt’ and ‘Coat’. On the other hand, our model uses
more fine-grained labels, e.g. ‘Shirt’ is further divided
into ‘TShirt’, ‘Vest’, ‘Hoodies’ etc. We use the change
all option provided in CloSe-T to correct such labels, as
shown in Fig. 11. Similarly, there is only one label for
lower garments: ‘Pants’, which we split into ‘Pants’ and
‘Short-Pants’.

We show some examples of heuristics-based segmen-
tation and manually refined segmentation in Fig. 10 and
Fig. 11. We explain more details about our interactive tool
in Sec. 9.

Ground Truth Segmentation Labels of CloSe-Di Scans.
For CloSe-Di, we follow a similar idea, but instead of us-
ing SMPL+D registration and SMPL UV space, we use
Metashape [5] to perform 2D-to-3D lifting of segmentation
labels. The recovered 3D segmentation might be inaccurate



because of 1) inaccurate 2D segmentation prediction, and 2)
inconsistent 2D segmentation labels across different views.
Similar to our processing of CloSe-Dc, we clean noise using
heuristics. We define heuristics-based priors on SMPL mesh
and clean the labels in for scan points directly. This allevi-
ates the problem of obtaining SMPL+D [10] registrations.
We deployed two different classes of heuristics:
• Body Parts Heuristics: We rely on the prior knowledge

that some garments should not belong to unusual body
parts (e.g., t-shirts on feet, trousers on arms etc.).

• Garments Class Heuristics: In some cases, we observed
artifacts related to specific combinations of garments. In
these cases, we deploy an additional set of rules to address
these issues specifically.

8. Method
We explain the details of our model CloSe-Net in this section.

Point Encoder. We use the official implementation of
DGCNN [53] and use 3 layers of EdgeConvoluation op-
eration, followed by a single-layer MLP.

Clothing Encoder. We use a multi-head attention module
in the encoder, where nhead = 4 in our case. We also
apply positional encoding to the query vector(p′2

i ), before
calculating the attention score.

Body Encoder. F b requires the computation of nearest
neighbors for each point within the batch, potentially leading
to computational overhead during the training process. To
mitigate this, we opt to precompute F b. This is done by
finding the nearest point for each scan point from the posed
SMPL mesh (M(β,β)). Subsequently, during inference, a
preprocessing step is employed to calculate F b beforehand,
which is then used during inference.

9. Interactive Tool
In this section, we explain common functionalities provided
by our tool and its usage in data annotation and network
refinement.

Interactive Tool Interface. We implement CloSe-T using
Open3D [65] in C++ and introduce an easy-to-use, light-
weight interactive 3D tool, which provides following func-
tionalities:
• I/O operations: Loading/Saving meshes and labels, Load-

ing/evaluating pre-trained model, Saving/Evaluating re-
fined network.

• Scene: Move in the scene with mouse control, change
lights, background, etc.

Textured Scan Initial Segmentation Clean Segmentation
(using CloSe-T)

Figure 10. Segmentation labels obtained using our heuristics
might result in unclear boundaries(top, middle) and undesired noisy
patches (bottom, middle). We clean such noise using CloSe-T and
obtain high-quality labels, as shown on the right.

• User selection: Easy polygon-based region selection by
selecting the polygon edges by clicking.

• Labeling: Relabel region based on user selection/majority
vote.



Textured Scan Initial Labels Corrected Labels
(using CloSe-T)

Figure 11. Due inherent uncertainty in clothing classification, the
segmentation labels acquired through [16] might be incoherent.
However, such labeling discrepancies can be easily corrected using
CloSe-T.

Figure 12. Functionalities provided in CloSe-T interface includes
based I/O operations, mouse-controlled camera movement in the
scene, region selection, relabelling, evaluation, and fine-tuning
CloSe-Net.

Label Correction. There are multiple options to label the
selected regions
• User selected class : Manually set the class assigned to

the selected areas. The predefined list of classes is shown
in the dropdown menu; see Fig. 12(right).

• Majority Vote: If a partial/inaccurate initial segmentation
of the scan already exists, the selected region can be la-
beled more efficiently using the ”majority vote” procedure.
More precisely, for example, if there is a patch of misla-
beled points, the user can select the wider region around

it, and label the whole region by the class that is the most
commonly present in the region. This makes the labeling
procedure much faster.

CloSe-T for Data Annotation .
We use CloSe-T to manually clean segmentation and

generate high quality segmentation data, as shown in Fig. 10
and Fig. 11. We provide a demo of labeling process in the
supplementary video and visualize key-stage of pipeline in
Fig. 13.

Due to the inherently error-prone nature of the segmen-
tation label generation pipeline, numerous scans displayed
noisy boundaries and improperly labeled clothing classes.
To address this issue, approximately 1000 scans were anno-
tated using CloSe-T within the CloSe-D dataset, while the
remaining were carefully verified. Consequently, CloSe-D
comprises a curated segmentation label dataset that has been
meticulously verified.

CloSe-T for Network Refinement. We also use CloSe-T
to improve the generalization of our model for real-world
datasets. We first predict the segmentation label for a given
scan using the pre-trained CloSe-Net. Since the given scan
is out-of-distribution, network results might be incorrect
and noisy. We then refine the network prediction for the
given scan using the steps mentioned in data annotation.
We explain training details and experiments in Sec. 10. The
new network is used to infer the given scan again and also
evaluated on the test-set of CloSe-D. All these functions are
implemented as a simple button click in the tool, see Fig. 12.
The newly trained model can be saved and used of this new
out-of-distribution dataset for better generalization.

10. Results

In this section, we provide more results of our model.
In Sec. 10.1, we provide more comparison with baseline
methods, followed by comparison on BUFF [60] dataset in
Sec. 10.2. Finally, we provide ablation studies for contin-
ual learning setup of our model and show more results on
real-world datasets in Sec. 10.3.

10.1. Comparison with baseline

In this section, we analyze more comparisons with part seg-
mentation methods to understand the cause of superior per-
formance of CloSe-Net. We broadly classify them into 5
factors, as discussed below. These factors act mutually in
many cases, widening the disparity between the performance
levels of baseline techniques and our proposed approach. In
the table Table 6 we provide a quantitative comparison on
the test split of CloSe-Di.



Load scan with texture Visualize current segmentation Select region and relabel Visualize new segmentation

Figure 13. Annotation using CloSe-T.Using CloSe-T, we first load the scan with texture to understand the scan. We then visualize current
segmentation as an overlay on the textured scan. After inspection, we identify and select mislabeled regions and assign them the correct
label from a predefined set. Finally, we visualize the new segmentation and inspect by moving the camera around the scene.

Method Mean T-shirt Shirt Vest Coat Hoodies Short-Pants Pants Skirts Hat Shoes Body Hair

DGCNN [53] 92.65 97.50 93.23 95.78 86.89 99.54 96.89 87.27 98.90 97.26 86.17 84.19 88.14
DeltaConv [54] 91.30 97.19 88.12 96.57 86.98 98.55 94.39 86.87 98.69 97.26 83.42 80.33 87.29
Ours 95.19 99.12 96.18 99.48 87.93 99.69 97.98 89.39 99.05 99.06 89.97 89.78 94.66

Table 6. We quantitatively compare the results of our method SotA part-segmentation methods, DGCNN [53] and DeltaConv [54]. We
report IoU for every class and mean over all the classes(IoUmean).

Clothing Information. Baseline methods DGCNN [53]
and DeltaConv [54] have no prior about clothing present in
the scan. As a result, these methods rely on local/global
geometric and appearance features. Given the diversity and
complexity of clothing items, it is challenging to learn about
robust semantics from limited information. As a result, base-
line methods seem to generate multiple clothing classes in a
vicinity, mislabel clothing classes, and are not able to learn
the shape/structure of clothing items. This is evident from
all the examples shown in Fig. 14. CloSe-Net not only takes
advantage of clothing information but also learns a more
distinctive feature for each clothing class and consequently
learns clothing prior based on local features and these cloth-
ing features(via attention module).

Texture Bias. As observed in Fig. 14(first and second
row), baseline methods are highly sensitive to changes in
texture. As a result any steep change in texture results in a
new clothing class. However CloSe-Net produces accurate
results. For baseline methods color, normal and location
are the only guiding signal without any prior. Given limited
training data, they tend to overfit to textures scene during
training.

Multi-layer Clothing. We also observe that baseline meth-
ods are not able to recover multi-layer clothing labels
see Fig. 14(third row). As there is no prior knowledge about
clothing present in the scan, baselines rely on texture and
geometry information. In such cases, baselines seem to pre-

dict the most commonly seen example with texture during
training such as hoodies or shirts. On the other hand, the
clothing information used in CloSe-Net helps with better
comprehension, even if local features are very similar.

Shape/geometry Bias. Similar to texture bias, the baseline
method also has geometry bias to some extent. As shown in
Fig. 14(fourth row) loose upper clothing with larger shapes
are classified as hoodies, although the labels are not noisy.

Sparse Clothing Classes. We also observe that CloSe-Net
performs well for rare clothing classes such as dresses, hats,
etc. On the other hand baseline methods fail to generate
consistent labels.

10.2. Comparison with Prior Work

We compare or model with prior work GIM3D [36] on Buff
dataset [60]. We use 15 scans from BUFF, as in [36] for eval-
uation on the 3-class segmentation problem. We use Point-
Net++ [38] based model from GIM3D and report the number
in Table 7. We observe that for both CloSe-D-test and BUFF
dataset, our model significantly outperforms GIM3D [36].

10.3. CloSe-Net on Real-world Datasets

We qualitatively evaluate CloSe-Net on publicly avaial-
ble real-world datasets such as THuman2.0 [59], THu-
man3.0 [45], HuMMan [12], 3DHumans [20]. We have
added more results in Fig. 16. We observe that for all
datasets, CloSe-Net generates good results and generalizes
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Figure 14. Baseline method like DGCNN [53] and DeltaConv [54] have Texture bias (a, b), are unable to distinguish between multi-layer
clothing (c), produces incorrect labels if geometry deviates significantly from average body and clothing shapes (d) and underperform
for unbalanced classes such as dress and hats(e, f).

well. However, in some cases, it results in blurry boundaries
and noisy patches of labels, as shown in Fig. 15.

We propose to improve the performance of our model
for such out-of-distribution scans, by fine-tuning the model
in a continual learning framework. We follow [50] and
experiment with various loss combinations and training con-
figurations to find an optimal setup, such that network per-

formance improves on new out-of-distribution scans without
catastrophic forgetting. We show the ablation in Table 8.
We compare the mean IoU on test split of CloSe-D, after
iteratively fine-tuning on 2 sets of scans from this new dis-
tribution. Based on experiments, we pick the full loss(eq.
5, main paper) as training loss and only train the last layer
of the segmentation decoder and MLP of the Point Encoder.



Dataset MGN [10] GIM3D [36] Ours

CloSe-D-Test 88.88 72.04 92.47
Buff [60] - 75.41 90.13

Table 7. Comparison with MGN [10] and GIM3D [36] on CloSe-D
and BUFF dataset.

Figure 15. CloSe-Net predicts blurry boundaries for out-of-
distributions scans.

We fine-tune the model for 2 epochs only.

Table 8. Performance(IoUmean) on CloSe-D-test after network
refinement.

Layers trained Naive loss Weighted cross-entropy Full

fdec-last 90.33 90.37 90.25
fdec-full 89.14 88.53 88.50
fdec-last+ fMLP 90.62 90.53 90.33
fdec-full+ fMLP 89.00 88.53 88.95
fdec-last+ fMLP + f3 90.53 90.18 90.35
fdec-full+ fMLP + f3 89.00 88.53 88.62

Segmenting 4D Scans using CloSe-Net and CloSe-T. We
use the aforementioned setup to improve segmentation ac-
curacy for a given 4d sequence. We randomly pick one
frame of a 4D sequence and refine the model as per this scan.
This is similar to one-shot fine-tuning. Then we generate
the segmentation labels for the whole sequence. Since the
model has now learned appearance and geometry features of
one frame, this results in improved accuracy for remaining
frames. We show results on a set of poses from THuman3.0
and HuMMan inFig. 17.

Finally, we have generated high quality segmentation
labels of approximately 1000 scans(from diverse sources [12,
20, 45, 59]) using CloSe-Net and CloSe-T. We will release
this as CloSe-D++.
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Figure 16. CloSe-Net results on real-world public datasets [12, 20, 45, 59].



Figure 17. CloSe-Net is fine-tuned using CloSe-T on a single frame of a sequence to improve generalization on the remaining frames.
We show results of fine-tuned CloSe-Net on THuman3.0 [45](top) and HuMMan [12](bottom). Fine-tuned networks result in consistent
predictions.
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